Phosphatase actions at the site of appositional mineralization in bisphosphonate-affected bones of the rat.

نویسندگان

  • Yi Li
  • Hiroto Nakayama
  • Takuya Notani
  • Masud Ahmad
  • Makoto J Tabata
  • Yoshiro Takano
چکیده

Tissue-nonspecific alkaline phosphatase (TNSALP) and Ca-ATPase are known to play roles in bone mineralization, but how these enzymes contribute to appositional mineralization has been illusive. Here we examined the active sites of these enzymes in appositional mineralization using the bones of young rats being administered with 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) for 5 days. The doses of HEBP totally abolished mineralization of newly formed bone matrix except in matrix vesicles (MVs), and hence allowed precise localization of MVs and phosphatase reactions within non-mineralized extracellular matrix. Intense TNSALP and ATPase reactions were confirmed along the limited portions of osteoblast membranes where intimate cell-cell contacts were maintained. Diffuse reactions of these enzymes were throughout the osteoid implicating efflux of TNSALP and ATPase molecules into extracellular matrix from the osteoblast membranes. Phosphatase reactions associated with MVs varied both in intensity and location among the individual vesicles; newly formed MVs were almost free of reactions but appeared to gain those activities later in the osteoid. These data suggest that TNSALP and ATPase are released from the osteoblast membrane and later integrated into MVs within the osteoid. The osteoblasts may thus regulate appositional mineralization of bone from a distance at least in part by providing phosphatases via MVs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exogenous Nitric Oxide Induced Early Mineralization in Rat Bone Marrow Mesenchymal Stem Cells via Activation of Alkaline Phosphatase

Background: Since the low concentration and short-time treatment with sodium nitroprusside (SNP), a nitric oxide (NO)–donor, cause no harm to rat bone marrow mesenchymal stem cells (MSCs), we studied the impact of SNP on MSCs differentiation. Methods: MSCs were treated with 100 and 1000 µM of SNP for 1 hour in every 48 hours and after 5, 10, 15, and 21 days in osteogenic media. The viability an...

متن کامل

The Consequence of Vitamin E Exposure on In Vitro Cadmium Toxicity in Rat Bone Marrow Mesenchymal Stem Cells

This investigation aimed to examine the protective function of vitamin E on rat bone marrow mesenchymal stem cells (MSCs) treated with cadmium chloride. Rat bone marrow MSCs were extracted using flashing-out and cultured in DMEM containing 10% FBS and 100 U/ml Pen/Strep. At the end of the third passage, cells were divided into 4 groups including control, cadmium chloride, cadmium chloride + vit...

متن کامل

پتانسیل معدنی شدن نیتروژن خاک در اکوسیستم مرتعی تحت چرای آزاد و قرق دراز مدت در اقلیم‌های مختلف

Mountainous landscapes in Central Zagros are mainly used as grazing rangelands to feed animals and are heavily degraded. Overgrazing may impose a negative effect on rangeland productivity and sustainability through significant changes in soil properties. Soil nitrogen (N) mineralization is one of the key biological processes that might be affected by biotic and abiotic factors including range g...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

بررسی تاثیر ویتامین E بر تمایز آزمایشگاهی سلول‌های بنیادی مزانشیم مغز استخوان رت بالغ به استئوبلاست طی تیمار همزمان با سدیم آرسنیت

Introduction & Objective: Sodium arsenite disturbs the differentiation of adult rat bone marrow mesenchymal stem cells (rMSCs) to Osteoblast through oxidative stress. We aimed to investigate the preventive effect of vitamin E, a strong antioxidant, in sodium arsenite toxicity on rMSCs differentiation to osteoblast. Materials & Methods: rMSCs were cultured in Dulbecco’s Modified Eagles Medium...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of medical and dental sciences

دوره 55 3-4  شماره 

صفحات  -

تاریخ انتشار 2008